Reference List: CellGenix™ / CellGro® Products

CellGenix™ DC Medium and Cytokines

M. Eyrich et al. (2014)
Development and validation of a fully GMP-compliant production process of autologous, tumor-lysate-pulsed dendritic cells. Cytotherapy 16:946-964

P. Lazarova, G. Kvalheim et al. (2011)
Is anticancer vaccine possible: Experimental application of produced mRNA transfected dendritic cells derived from enriched CD34* blood progenitor cells. Immunology and Microbiology: Immuno-deficiency, ed. K. Metodie, chapter 3

A. ten Brinke et al. (2010)
Monophosphoryl lipid A plus IFN-gamma maturation of dendritic cells induces antigen-specific CD8+ cytotoxic T cells with high cytolytic potential. Cancer Immunol. Immunother. 59(8):1185-95

P.J. Hanley et al. (2009)
Functionally active virus-specific T cells that target CMV, adenovirus, and EBV can be expanded from naive T-cell populations in cord blood and will target a range of viral epitopes. Blood 114:1958-67

A.M. Dohnal et al. (2009)

I. Möller et al. (2008)
Dendritic cell maturation with poly(I:C)-based versus PGE2-based cytokine combinations results in differential functional characteristics relevant to clinical application. J Immunother. 31(5):506-19

L.H. Butterfield et al. (2008)

E. Ovali et al. (2007)

A. Curti et al. (2007)
Phase I/II clinical trial of sequential subcutaneous and intravenous delivery of dendritic cell vaccination for refractory multiple myeloma using patient-specific tumour idiotype protein or idiotype (VDJ)-derived class I-restricted peptides. Br. J. Haemat., 139(3): 415-24

W.J. Lesterhuis, I.J.M. de Vries et al. (2006)
Vaccination of colorectal cancer patients with CEA-loaded dendritic cells: antigen-specific T-cell responses in DTH skin tests. Annals Oncology, 17:974-80

M. Rapp et al. (2006)

Manufacturer
CellGenix GmbH
Am Flugafen 16 | 79108 Freiburg | Germany
Tel. +49 761 88889-0 | Fax +49 761 88889-830
www.cellgenix.com | info@cellgenix.com

CellGro® is a registered trademark of CellGenix in several global markets.
CellGro® reagents are marketed under CellGenix™, in North America and a few other countries.
Reference List: CellGenix™ / CellGro® Products

S. Jarnjak, Jankovic et al. (2005)
Evaluation of dendritic cells loaded with apoptotic cancer cells or expressing tumor mRNA as potential cancer vaccines against leukaemia. BMC Cancer, 5:20

W. Lu et al. (2004)
Therapeutic dendritic-cell vaccine for chronic HIV-1 infection. Nature Medicine 10(12):1359-65

Generation of dendritic cells from CD14+ monocytes positively selected by immunomagnetic adsorption for multiple myeloma patients enrolled in a clinical trial of anti-idiotypic vaccination. British Journal of Hematology, 121, 240-250

CellGenix™ DC Cytokines

M. Hansen et al. (2013)
Comparison of clinical grade type 1 polarized and standard matured dendritic cells for cancer immunotherapy. Vaccine 31:639-646

T. Berger et al. (2009)
Immature and maturation-resistant human dendritic cells generated from bone marrow require two stimulations to induce T cell anergy in vitro. PloS One 4:e6645

A.-K. Thomas-Kaskel et al. (2007)

M. Condomines et al. (2006)
Functional Regulatory T Cells are Collected in Stem Cell Autografts by Mobilisation with High-Dose Cyclophosphamide and Granulocyte Colony-Stimulating Factor. J. Immunology, 177(10): 6631-6639

M. Erdmann et al. (2006)
Effective Clinical-scale Production of Dendritic Cell Vaccines by Monocyte Elutriation Directly in Medium, Subsequent Culture in Bags and Final Antigen Loading Using Peptides or RNA Transfection. J. Immunother., 30(6): 663-674

H. Barth et al. (2005)

Clinical-grade myeloma Ag pre-loaded DC vaccines retain potency after cryopreservation. Cytotherapy 7(4): 374-384

D.H. Chang et al. (2005)

I.M. Svane et al. (2004)

Manufacturer
CellGenix GmbH
Am Flughafen 16 | 79108 Freiburg | Germany
Tel. +49 761 88889-0 | Fax +49 761 88889-830
www.cellgenix.com | info@cellgenix.com

CellGro® is a registered trademark of CellGenix in several global markets.

CellGro® reagents are marketed under CellGenix™ in North America and a few other countries.
Reference List: CellGenix™ / CellGro® Products

CellGenix™ DC Medium

S.T.H.M Kolanowski et al. (2014)
Comparison of media and serum supplementation for generation of monophosphoryl lipid A / interferon-γ-matured type I dendritic cells for immunotherapy. Cytotertiary 16:826-834

C.L.L. Chiang et al. (2011)
Optimizing parameters for clinical scale production of high IL-12 secreting dendritic cells pulsed with oxidized whole tumor lysate. J. Transl. Med. 9:198

J. Fucikova et al (2011)
Poly I: C-activated dendritic cells that were generated in CellGro® for use in cancer immunotherapy. J. Transl. Med. 9:223

Kalinski, P. et al. (2010)

H.S. Garritsen et al. (2010)

JJ Lee et al. (2008)
Type 1-polarized dendritic cells loaded with autologous tumor are a potent immunogen against chronic lymphocytic leukemia. J. Leukoc Biol. 84(1):319-25

H. Xiong et al. (2007)

A. Leen et al. (2007)

C. Napoletano et al. (2007)
A Comparative Analysis of Serum and Serum-free Media for Generation of Clinical Grade DCs. J. Immunother., 30(5): 567-576

I. Houtenbos et al. (2007)

A. Gaikwad et al. (2007)
In vitro expansion of erythroid progenitors from polycythemia vera patients leads to decrease in JAK2V617F allele. Exp. Hematology, 35(4): 587-94

Follicular dendritic-like cells derived from human monocytes. BMC Immunology, 6:23
Reference List: CellGenix™ / CellGro® Products

CellGenix™ DC Medium and T cell cytokines

M. Wölfli, P. Greenberg et al. (2014)
Antigen-specific activation and cytokine-facilitated expansion of naive CD8+ T cells. Nature Protocols Vol. 9, 950-966

CellGenix™ DC Medium for T cells

A.M. Rasmussen et al. (2010)

CellGenix™ SCGM and HPC Cytokines

D.J. Steiner et al. (2009)
Noninvasive bioluminescent imaging demonstrates long-term multilineage engraftment of ex vivo- expanded CD34-selected umbilical cord blood cells. Stem Cells 27:1932-40

H. El-Daly et al. (2005)
Selective cytotoxicity and telomere damage in leukemia cells using the telomerase inhibitor BIBR1532. Blood, 105: 1742-49

Ex vivo production of cord blood CD34+ derived myeloid precursors after serum-free static culture. Meth Mol Biol. 215:351-62

CellGenix™ HPC Cytokines

E. Zino et al. (2004)
A T-cell epitope encoded by a subset of HLA-DPB1 alleles determines nonpermissive mismatches for hematologic stem cell transplantation. Blood, 103: 1417-24

G. Kögler et al. (2004)
Reference List: CellGenix™ / CellGro® Products

CellGenix™ SCGM for HPC

A. Kiani et al. (2007)
Expression analysis of nuclear factor of activated T cells (NFAT) during myeloid differentiation of CD34+ cells: regulation of Fas ligand expression of megakaryocytes. Exp. Hemat. 35(5): 757-770

J. Szulc et al. (2006)

J. Oswald et al. (2006)
Gene Expression Profile of CD34+ Hematopoietic Cells Expanded in a Collagen I Matrix. Stem Cells, 24(3): 494-500

CellGenix™ SCGM for MSC

R. Pytlik et al. (2009)
The cultivation of human multipotent mesenchymal stromal cells in clinical grade medium for bone tissue engineering. Biomaterials 30(20): 3415-3427

CellGenix™ SCGM for NK cells

O.B. Hershkovitz (2009)
NKp44 receptor mediates interaction of the envelope glycoproteins from the West Nile and dengue viruses with NK cells. J Immunol 183:2610-21

D. Cho and D. Campana (2009)

E. Alici et al. (2008)

H. Guven et al. (2005)

Manufacturer
CellGenix GmbH
Am Flughafen 16 | 79108 Freiburg | Germany
Tel. +49 761 88889-0 | Fax +49 761 88889-830
www.cellgenix.com | info@cellgenix.com

CellGro® is a registered trademark of CellGenix in several global markets.
In North America and a few other countries CellGro® reagents are marketed under CellGenix™.
Reference List: CellGenix™ / CellGro® Products

Romanski A, Bug G. et al. (2005)

T. Igarashi et al. (2004)

Expansion of natural killer (NK) and natural killer-like T (NKT)-cell populations derived from patients with B-chronic lymphocytic leukemia (B-CLL): a potential source for cellular immunotherapy. Leukemia, 17: 1973-80